#### **BUILDING PERFORMANCE ASSESSMENT TEAM**

# Hurricane Fran in North Carolina

OBSERVATIONS,
RECOMMENDATIONS, AND
TECHNICAL GUIDANCE





FEDERAL EMERGENCY MANAGEMENT AGENCY MITIGATION DIRECTORATE



# FEMA Building Performance Assessment Teams

- Team Objectives
  - Inspect damage to buildings
  - Assessment performance of buildings
  - Evaluate design and construction practices
  - Evaluate code requirements and enforcement
  - Make recommendations as necessary



# FEMA Building Performance Assessment Teams

- Team Members
  - Representatives of public and private sectors and expertise in:
    - structural and civil engineering
    - building design and construction
    - code development and enforcement











- Building Types
  - Wood-frame on pilings
  - Wood-frame on slab-on-grade foundations
  - Wood-frame on continuous masonry wall foundations
  - Manufactured homes on dry-stacked masonry block foundations



- Damaged Observed
  - Leaning and collapsed buildings
  - Undermined continuous foundation walls
  - Collapsed decks, porches, and roof overhangs
  - Broken vertical foundation members
  - Broken cross-bracing on piling foundations



- Damaged Observed (continued)
  - Undermined below-building concrete slabs
  - Exposed septic tanks
  - Loss of electrical, water, and sewer lines
  - Collapsed AC/heat pump compressor platforms



- Damaged Resulted From:
  - Erosion of frontal dunes and beach profile
  - Localized scour around pilings and continuous foundations
  - Velocity flow, wave action, and debris impact on:
    - vertical foundation members
    - cross-bracing of piling foundations
    - walls of below-building enclosures







### Erosion

- Affected oceanfront buildings
- Lowered beach profile 2 to 3 feet
- Lowered grade 4 to 6 feet below buildings
- Exacerbated by previous effects of Bertha







- Localized Scour
  - Affected oceanfront and landward buildings
  - Depth of scour = 1 to 1.5 times diameter or width of vertical member







- Erosion Plus Localized Scour
  - Completely exposed, or reduced embedment depth of foundations
  - Resulted in collapse of over 100 oceanfront buildings
  - Resulted in many other buildings leaning















- Applicable Codes and Requirements
  - North Carolina Coastal Area Management Act (CAMA) - building setback for erosion protection
  - North Carolina State Building Code piling embedment depth
  - NFIP requirements



- Minimum CAMA Setback Requirements (from first line of stable natural vegetation)
  - Single-family homes and commercial/ multi-family buildings <5,000 square feet</li>
    - 30 x erosion rate (minimum of 60 feet)
  - Commercial/multi-family buildings >5,000 square feet
    - 60 x long-term erosion rate (minimum 120 feet)







- State Building Code Embedment Requirements for Main Structure Pilings
  - Pre-1986 8 feet below grade for all structures
  - Post-1985 16 feet below grade or -5 feet m.s.l., whichever is shallower, for structures in erosion-prone areas











- Effect of Federal and State Requirements
  - Buildings that met CAMA,1986 State Building Code, and NFIP requirements outperformed all others
  - Post-Fran piling embedment depth study conducted on Topsail Island by FEMA contractor indicated value of deeper embedment requirement of 1986 State Code







- BPAT concerns about construction practices involve:
  - Piling and post embedment depths
  - Use of cross-bracing
  - Grade of lumber for pilings and crossbracing
  - Use of continuous foundation walls



- BPAT concerns about construction practices involve: (continued)
  - Installation of breakaway walls for belowbuilding enclosures
  - Construction of below-building concrete slabs
  - Installation of utility system components



- Piling and Post Embedment Depths
  - Shallow embedment depths on pre-1986 buildings
  - Shallow embedment depths on decks, porches, and roof overhangs on pre-1986 and post-1985 buildings
  - Shallow post embedment depths for AC/ heat pump compressor platforms

















- Use of Cross-Bracing
  - Installed perpendicular to velocity flow and wave action
- Grade of Lumber for Pilings and Cross-Bracing
  - Use of lumber with excessive numbers of knots, cracks, or other defects for vertical foundation members and cross-bracing











- Continuous Foundation Walls
  - Use in A-zone areas susceptible to high velocity flow











# **Observations**

- Breakaway Walls
  - Placement seaward of cross-bracing
  - Installation of sheathing continuously across vertical foundation members
  - Attachment methods that prevented breakaway (e.g., too many fasteners)

















# **Observations**

- Below-Building Concrete Slabs
  - Slabs too thick (i.e., >4 inches)
  - Inadequate number of contraction joints
  - Use of wire mesh in slabs
  - Slabs connected to vertical foundation members











# **Observations**

- Below Building Concrete Slabs (continued)
  - Slabs and grade beams cast monolithically
  - Use of concrete collars around vertical foundation members to support slabs







# **Observations**

- On-Site Utility Systems
  - AC/heat pump compressor platform support posts not embedded deep enough
  - Unanchored AC/heat pump compressors
  - System components on or adjacent to breakaway walls



















# **Observations**

- On-Site Utility Systems (continued)
  - System components installed on seaward faces of vertical foundation members nearest ocean
  - Septic tanks installed on ocean side of building













































- Piling and Post Embedment Depths
  - In absence of State/local requirements, embedment depth for pilings in erosion-prone areas should be -10 feet m.s.l.
  - State of North Carolina should consider requiring embedment of 16 feet below grade or 5 feet m.s.l., whichever is deeper
  - Embedment depths for deck, porch, and roof overhang pilings should be same as for main building







- Other Foundation Issues
  - Design foundations to resist flood/wind forces without cross-bracing
  - Require engineering analysis of potential scour before permitting solid foundation walls in landward areas subject to highvelocity flow



- State and Local Requirements
  - Consider adding code requirements regarding grade of lumber used for pilings and cross-bracing
  - Consider requiring that buildings be elevated <u>above</u> the BFE



- Manufactured Homes
  - Protect foundation from scour (e.g., geotextile fabric, non-scourable soil, extend below scour depth)
  - Periodically check anchor straps for corrosion and proper tension



- Manufactured Home (continued)
  - Use proper size and type of anchor for soil conditions on site
  - In all coastal flood areas, elevate home so that bottom of chassis I-beam is above BFE



- Breakaway Walls
  - Do not extend sheathing across vertical foundation members
  - Attach walls so that they will break away under flood forces
  - Do not install walls immediately seaward of cross-bracing













- Below-Building Slabs
  - Limit slab thickness to 4 inches
  - Install adequate number of contraction joints
  - Do not use wire mesh









- Below-Building Slabs (continued)
  - Do not connect slabs to vertical foundation members
  - Do not cast slabs/grade beams monolithically
  - Do not install concrete collars around vertical members under slabs



- On-Site Utility Systems
  - Embed vertical members for AC/heat pump compressor platform to same depth as those for main building, or use cantilever platform
  - Anchor compressor to resist wind





**Mechanical platform supported by pilings.** 







- On-Site Utility Systems (continued)
  - Do not place utility system components on, through, or adjacent to breakaway wall panels
  - Locate utility system components on landward faces of vertical foundation members farthest from ocean
  - Locate septic tanks as far landward as possible





